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ABSTRACT

We present a new method for attacking the radéne problem. It improves J
the standard radome anaiyses in the two aspecta: t!ie descrip-cion of the 1
incident fiéld, and the cuﬁatute of the radome surfacé as explained below.
(a) The radome is normally situated in the near~-field zome of the antenna,
wnich may be a hérn, a slot, or an array. Taking into consideration the
finite antenna gsize, we apéroximately replace it by an array of discrete
point sources, each of which radiates a sphérica&’. vave. 'nxis approximation '
is differept from that used in couventional techriiques in which the
i;xcidtmt field from the antenna is approximately tapfesenced by & spectrum
of plane waves, instead oS spherical waves. (b) In calculaging
the wave transmission t:h'ruugh the :adome, the curvature of the radome is .
invaz iably igno;ed in conventional analyses. Our approach, however,

does treat the radome as a curved surface by .talculating the transmission . ?

of a spherical wave via ray t:echniques. , . \
| In this part of the report, only the point source situated inside ‘ \

the radome is siudied. Extensive numerical results show thac the curvature

of the radome may signifiéan:ly modify the field tramsmitted through the

radome. This modification camnot be accountet’l for by couventinn.ai

uldou analyses. In ‘the second part of the .;eport,‘.ve will consider tﬁg

superposition of poiﬁt sources wﬁiﬁh simulates arrays or aperture intennas

inside the radome.
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I. TINTRCDUCTION

Many practical antennas are covered by radomes, whose effects on
the antenna radiation are of considerable importance, especiallyAin‘
tcday's high-performance radar/communication systems. In the past
quarter of a century, several standard analyses have beep dgvised for
analyzing radome effects. ¥None of them is exact, and improvements are
alwvays needed. The prasent report described an effort in this ditrection.

A'typical radome problem may pe stated as follows. Let an aperéure
antemna A, for instance a horn, a slot, or a goaformal array, radi;te a
known field Ei(;) in free'space {see Figure 1). A protective shield or
radomz I is placed around antenna A. The problem is to detetmine.the
radiation field f for the composite structure, i.e., the ancenna'Ai‘
radiating in the presénge of the radome. This problem has receivéd a great
deal 6f attention from'many researchers dutiﬁg the iast fwo decadeg,'and a
so-called "best available" method for attacking this problem appears to
have emerged. A brief description of this method is éiven belo?.

(a) In the vicinity of £, the incident field # i3 not a ray field |

(locally plane~wave). To circumvent this difficulty, let Ei,be resolved

.inuo‘a spectrum of plane waves, nanily,

B - J- dk_ r dk W(E) kT A ¢ 5 3
W) - l‘zl‘i] rdx r ay B @) eer 1.2)

Here, f'- (kx,ky,kz) is the direction of bropaga;ion of the plane-wéve

spectral component. The spectral wave number in the z-direction,

e bt
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(a) free space ' (b) radome environment

Figure 1. Antenna A and radome I.

“igure 2. Two choices of incident directions: Al and Pl.
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. — 2 X
Tk = ulue -~(gi+ky) . (1.3)

‘may be real (hohcgenaus plaﬁefwsée):0£ imaginary (inhomogenoug ~lane-
wavei. The weighting factor ﬁ(ﬁ) is the amplitude of the plane-wave
spéctral component propagating-in the ditectian k.

(b) For each plane-wave qoﬁpénenc, a transmission coefficient macrix
fo(f) for a flat-dielectr§c;slab_can be obtained from any‘standard text om
EM theory. The‘subscripﬁ-zero of fo indicates that it is derived from the
assumption of 2 plane—waﬁg incident field. The transmitted field §:(2)‘at

" point 2 on the outer surface of L is calculated from the formula

- I [ - - = *.* ’ E
E%(2) = f dk_ r de T ) U T . L) _

(c) Once Et(Z) 1s known for all points on the outar surtace of I,
. equivalent surfac; ~urrent sources (3(2). E(Z)) can be determined. The
. convolution of the gource with the.Green's function gives the desired
radiation field which is expressible as
i@ -” B F+5,0Ha . (1.5)
© outer I
The apé:oach describe& abévé is of course theoretically.souna;‘ However,
- its fqitﬁful executicn is impracfical $e§§u5e~of Ehe extremely labori;uég
~nuh¢rica1'integratioqs in (;.4) anﬁ.(l.S). in the wellfquoted analyses
by Paris (1] and Wu and Rudduck [2], the numerical integration in (1.4)
is avoidédAby approximating the trapsmittéd field at point 2 by
4 3 . ,

o | .
E'2) B R Ty e 0

-where ch;vincidgnc direction isvdetermined by |




N .
ko = acrual ray dirvaction Al, or the direction Pl ¢f the

Poynciné vector of Ei (figure 2). ' {2.86W)

Note thaé the appioxima:ion in (1.6) 1sv:o deseribe gi by a plane wave.
Since the‘tadome is in the n2ar zone of the antenna, this plane wave
abptoxima:iﬁn for Ei aesqtibed in [1],'I2] dces not seem to be a good, one.

In the present report, we approach the radowe problem frem a different
viewpoint. ' Instead of decompésing the fncid nt fleid Ei into a‘plane wave
spectTum, we apptoiimate the finjite-gized antenna A in Figqre 3a by an
array B.ig Figure 3b. Fach eleuent 1n‘array B radiates a spherical wave,
Those spherical wave conséitueuts, transmitting throﬁ;h'the radome L, are
superimposed to give rise to the desired rad‘ution fieid E in tae far zcae.
Thus, the key step in the preéent approach is to determine the transmiscion
. of a spheiiqal wave through a curved dieleccfic shell.

V'e shall apply geometrical optics to solve the transmission through
the cdrved,fadome. Results afe‘preaented in this part (Part I). In Part

1T of this report, we shall discuss how we superimbose point sources to

approximate a f’ :ite-sized antenna in a practical radome problem.
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A

~ Figure 3. An aperture antenna A inafi a radome is approximated

by an array B, Each poirc r wrce in array B racdiates
a spherical wave.
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Figure 4. Transsission thiough & dielecteic shell due to incidence
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II. DESCRIPTICN OF FROBLEM

The geometry of the radome problem under consideraticn is sketched
in Figure 4. A point source at PO étoduces a spherical wave which goes
through a curved dielectric shell with nonuniform rhickness. Ray

techniques are used to determine the field at poiat B, on a given .surface

3
outside the shell. First, let us describe the various elements ifuvolved

in the problem.

Coordinate Systers and Time Convention. The main coordinate system

is tho rectaﬁgular systen (x,y,2z), whose origin is chosen at the source
point P0 and the z-coordinate is in ;he directioﬁ of the beam maximum
of the anteun‘. Other éoordinacq systems at points Pl’ Pz and P3 along
the ray are define4 litet, The field is time~harmonic with the time
factor exp(+jwt) which is suppressed throughout. |

" Source. We assume that thu source has & well-defined "phase center”
at point PO' the origin nf the coordinate systenm (;,;,;), and radiaces
- & spherical wave denoted by (Ei, ﬁi). If the antenna is an a:ray of point

sources, it is necessary to consider each clan@nt in the array sazparately

and superimpose their final fields at the observation points.

Dielactric r;dq-g.‘_Tht ridoﬁn iz a diclactric shell vi:h nonuniform
thickness of r¢1¢t1§¢ dielectric cogsean: € " e/;o or r‘fraction index
ne YG:: fﬂd is bounded b} the lsncr and outer surflcéﬁbzl ;nd 22,‘
respectively. The innar agrf;cq 21 (near the source) is described by

the equation:
g - ti(x.y) , for ‘1 < g < b1 nnd,c1 <y« d1 . (2.1)

Tﬁi outer surface I, is given by the aquation:’




‘'z t‘fz(xﬁy) . for a, <x < hz and Cy <y« dz . (2.2)

It is not necessary to know the analytical form of the funccions fl(x,y)

and fz(x,y). In couéuta:ion, only a set of discre;e data points

{x S f } with n = 1,2,...,N is oeeded for the deactiption_of f(f or £ ).

Thegse points are fitted by a cubic spline vhick gives automats ca)ly first
and second partial derivatives of f, 1.e., af/ax, 3£/3yﬁ 3 f/ax . 3 f/axay,

| and azf/ayz. There afe two requitenents for tne cubic-spline fit:

{i) the data points can be distribu:ﬁd over a random grid, dut they must

. be dense enough to dcictibe the fine details of L(Z, or 22); (1{1) the

h 4
domain of the data points (a < x'< b and ¢ < y < d) must be somewhat
greater than the area of I in which the incident vay is expected to

intersect the radome.

~ Observation points. Observation point PS ts located on & praspecified
surface I 30 which can be either one of the following two types:
| (1) Spherical £3 with center at P and an infinitely iarge radius.
‘In this cisc,-PJ is in the far £1c’d ‘and the field at P3
c;lculacnd by thc ray tcchniquc is the final result. .
(11) Planar I, vhich is just outstdc the radome and normal to the
z~axis. In this case, we hlV‘ to integrete the fleld on 23 to
obcatn ‘the far ficld._ :

In latet cllculatioul, ve use mostly :L\ ophn:ical 23 1n (t).




III. GECMETRICAL CPTICS FIELD

 For a given incident field (Ei,ﬁi) generated by the source at poiat
Pb (Fig. 4), the asymptotic solution of the field at peint P3 is detgt—
mined using s;anetrical optics [3], [4]. 7The method of solution is
" described below.

A. Hathod of Solution

Cousider a ray im direction (8,¢) extending from the. source point PO

to the point Pl on tl.

isotropic; hence. the ray 14 a straight line along the unit vecticr ¥o1°

The source region (Region . *s homogeneous and

is found and the coordinates of point P, are

01 1.

determined. Then tht: unit vector Hl normal to the surface 21 at point P

is found (Figure 5). The plane of vectors Loy and Ni establighes the
incident planze. The angle between these two vectors is the incident

?1tst, the dislance r

1

angle ai. Using Sonell's law, the refraction angle ai is obtained, which

Tige fn Region II
(dielectric). Thb ray in Regica II 1s & straight line zlong the unit

establishes the direction of the transnitted wave,

vector ;12. rhra‘ coordinate systems (xl.yi.tOI). (“1"1’ l). and

(xl,yl.r 2). uith cowmon origin at poiat Pl’ arc then established.

They buelong to tho incident ray, the aurfacc zl. and the transmitted

. ray, respectively. _ | » | .
The incideat field (i{,ﬁ;) is split iﬁto a normally polarized fiels

(E1°,8]7), (2-vector normsi to the incideat plane at P) and « parallel

polarized field (ii’.ﬁ{“). The transritted field at point P, is obtained -

1
as follows:
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R PEn | EP L ET KD, (3.1

>tn

1 1

in which tT and P ere transmission coeffiﬁiencs for the normal and

1 1
parallel polarized fields, respectively,

Y ﬂo§ ut cos at
- 2 v . = - ) n 1
1 1+v ’ al 1
al _ Yo cos al ccs a1
t ot

P - 2 . . 2 ces3 al ;‘L ccs ay 6.2
1 1+v 1 ’ Pl 2. cos a, B cos ai
P - %o 1 1

€ S . - . '
). J 1 1 [ € =
Y B - — -—-—: . Y - - s —— nY . n= ——— € .
0 zo. My 120~ _ z /uo, ¢ / €0 r

Rote that the subscript 1, in ﬁiﬂ for example, signifier the field

evaluated at point 1.

The transmitted field at P1 38 incident on 22 at point Pz. Coordinates

of this point zan be found from the knowledge of the coordinates of point,

P, and the trans:itte& ray direction T12° The field values, in gd;ng from

1
P1 to P,, undergo s(me change which 1is depéhdant ot the divérgence of the

ray. lThus,.vu have
o “3krio e | C o
B-ore PE Gy

in which k = nko !s :ho wave nuloer in the dialcctric and DFLZ

divergence- factor fot the pcncil of rayt cravclling fron P1 to P2 in the

is the

dieleccric., ‘It is given in {3], as

I ,\-1/2 I \-1/2 .
Dy, = 1+aq 12) (1 +q, 12) (3.4)




in which qix and qEI are the principal curvartyres {(ipverse c. the radii

¢f curvature) for the ray pancil in Region II. They are found from the
éurva:ure matrix of the :ransm;:ted ray at point Pl’ as showm in
' Subsection B. The matrix itself is found from a formula invﬁlving the
curvature mastrix of the incident tay and that of the surfe:e Zl at point
Pl. The curvature matria of the trauswitied raybpencil,at point Pi is.
also used to find the curvaturé matrix of the ray at point Pz‘incident
upon the surface XZ;

Baving the field incidenf upou~£2 at point Pz, the iay direction ;12’

and its curvature matrix, we can procced, in a mammer similar to the

transmission through Zl.’to find the field tracsmitted through I, at P

2
is obtained, and

V3

(Figure 6). Thus, a uait vector NZ‘ aormal to Zzl

togethar with T defines the incidence plane at point P The incidence

2"

angle ai (cos ai =N, - r..) is then calculated. Again, Snell's law is
2 0% % TN " Ty _

invoked to find the refraction angle a§ at Pz. This angle specifiec the
ray direé¢tion ; a3 in Region III (outside the radome). Three udordinaﬁe
systems (x,.;z.r 2). (uz,vz,ﬁz, and (xz,yz.rn) with common otigin at
point P2 are then introduced. ! .

The field (ﬁ1 »1) incident upon Zz at Pz is tesolved into patallel
' and normally bolarizod fiqlda, from which the trausmitted fields are found

-as follows:

stn - .n *in P v o n
Btk P evr,«E
- - - - -
tn _ P . in tp . tn o N
H2 t, Hz , Ez zouz bt Tyy (3551'

o1

e e ot Gt el sk e S B A N - 1T
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T

in which
t
P2 S e
2 T+v. * Y2 1 i
cos a,
cos ab
P 2 2
t - s V., =n . (3.6)
2 1+ 0p2 p2 cos a;

The field at obsgrvation'point P, is then fdund'fran the transmitted field

3
at P,, such that,
~fk T ' '
0°23 :
E, = (0F,;) e E§ . _ (3.7a)
in which
L I ,-1/2 I \-1/2 -

DF23 {1+ q1 r23) i+ q, t23) . (3.7b)

I1I I1I

and 9; and 95 aré the principal curvaCu;es of the ray pencil in
Region ITI. They are obtained from the curvature matrix of the
transmitted ray aﬁ point Pz. " This matrix is{oﬁtgined from a férmula
already mentioned in connection with;:ransmission;thtough Zl. For

a typical factor in Eqs. (3.4) and (3.7b), the foliowing square root -

coﬁvention is used:

i

+|£fl, £ f 13 resl

f=1//1+qr= (3.8)

+i|£], 1f £ 1s imaginary

It should be mentioned here that we hLave ignored multiple reflections

in the dielectric radome throughout our analysis.

B. Details of the Calculation

C&otdinaccs of the first refraction point, Pl."Fdr a given ray leaving

thg source point Po,rthe coordinates of the point Pl,'in:erséctiou'of.ché'

/ l"
: 12

R, |



el

rectilinear ray with the interface I,, ares givem by
X =Ty sin 8 cos ¢ .

- I . 1’ 2 ‘
Y, * For sin 8 sin ¢ o1 (x + y1 + 2 ) o (3.3)

z1 - r01 z08 © '
in wbich 6 and ¢ specify the ray direction in the spherical coordinate
system with origin at Po. Since point Pl is on the Qurface El(z - fl(x,y)),

. we can write

To1 ©o8 8 = fl(r01 sin 6 cos ¢ , To1 sin 6 s;n ¢) . (3.10)
For given 8 and ¢, this nonlinear'equation mugst be sévéed for t01. Coce
To1 is known, (xl,yl,zl) are found from (3.9) and thg}unit vector r,, is
- rnx+ yly'+ z,2 - :
Tor ™ " .« (3.11)
01

Cooridinate systems at point Pl‘ The unit vector Nl, normal to the

gurface I, at point P

1 p i

- vg, (x,y,2)

- ' .z IS T ol W
l']. Vgl(x,y,z) >’ gl(x,y,z) z fl(x,y) ’_? x +'3;y + 3z
a P . ) . - ) ) )
. 1l
‘.Q 1 - . -~ : A' i .. ' .
. or .‘1 - 5, (z - flxx - flyy) ‘ : : (3.12)
in which
o af '
! oh u 2 12
flx % fly 3y } R Al (1 + flx + f ) . (3.13)
*1 Y1 ‘

(Notice that the direbtion-of'ﬁl is cheszr pointing awgf from the sourca.)

Vectors To1 and Nl specify the incident plané'at point P,. The coordinate

.13
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P s e AL ocg ,
systems \xl,yl,r01), (xl,yl,rlz) and (ul,vl,N ) at point P for the

incident ray, the transmitted ray and the surface Zl, regpectively, are

chosen such that ail three have one common coordinate perpendicular to the

~

incident plane, that is, v, = yi = yi (Fig. 5). Notice tha:, in general,

the coordinate systems could be chosen arbitrarily. However, the choice
made here offers some simplification in the calculatioun of curvature
matrices, as is shown later. Thus,

a -~

N,

. = “1 - .t -» -—'-l—-——-—'l 01 =~ -‘L - . . N V
vy =¥V, |ﬁ x'; ] Ll[ (yl + zlfly)z + (x1 + zlflx)y (3.14)
1 01
+ (£, - v fp02]

in which'xl, Y1 and 2, are given in (3.9) and

)2 * (x 2112 (3.19)

- [ -
Ly =[G, + 11 11:’*'(11 Y1f1x)

-

- 4
Then vy and xI are specified as

- a -~ ) 1 2
u =V, ox N, 5L, {[xl(l + fly) + fh(z yl 1y”" + [71(1 +, f )
+f (z, -xf)]y+[y x + 2. (2 + £2 )72} (3.16)
1y 1fig ¥Rl P U Yy : .

and

‘1-.1 - a——l - 2 2"“ T .
TN T TT {[xy(zy =y £y0) + £, 07 + 2D Ix + [y,(z; = x ;)

To11

2 20 | | v 2 2yl S
+ fly(x1_+ zl)]y - [zl(ylfly_+ xlflx) + (x1 + yl)]z} 7 ’(3.17)

in whiCh‘Al and L, are given in (3 13) and (3 15), respectively.

Notice that. both “1 and xl are in the plane of incidence.

14
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In order to'spécify the coordinate system for the transmitted ray at

point Pl, the,transmission'direction rlZ is first obtained. To this end,

the inciden;e_and.reftactidu angles need to be found. [ncidence angle ‘ 1
ai is svch that
- A 2, -x,8, -~y £,
cos ok u N, ° « 2 L 1= L1y

r = . (3.18)
1M T 8,501

, e
TR TP RO

Snell's Jaw is then applied, to find the refraction or transmission angle

ui such that

-l(1 - cosz ci)IIZ

t -1 1,
s%n ay = n sin a; = o 1 - (3.19)

Now‘rlz, like Toy? is in the plane cf incidence and can be written as

~ -~ -~

A.A‘ - ‘A oA t ) :A
T, " (r12 : ul)u1 + (r12 Nl)Nl sin a; u, + cos a, Nl . (3.20)

Notice that due to the particular chéice of ;l.and &1, as given in

(3-14) and (3-16), ai and a; are always less than r/2; hence, their sines

and cosiﬁés are alw;ys positive real numbers (for lossless'dielectric) and
no gign anb;guity éxisgs. Once ;12 and ;; are prape#ly define§ (in (3.14)
and (3.20)), the third cqordinate direction for the transmitted ray ;i is

found from | ' ' o

at-at A.-ﬁ., 'ta tn - tA, cA
Xy =y X, x'(sin ay uy + cos “1_"1) cos aj u; - si.n,_a1 Nl e

, . _ o (3.21)
Coordinates of second refraction point, PZ:‘ Baving the

'coordinates'of,point-Pl (from 3-9) and (3—10))-aud the ray direction’

vector in the dielectric Ty,» the coordinates of point Pz_cén be found.

Thus




-~

12 T X% P Yy * 2p7 2 Ty (apx b By Fvp2) = rppryy

-

T2 T %12 T TR ATy

Y12 ™ 82512 V=¥t Byt

12 * Y2¥12 2y = 23 Y yFp0

(3.22) 3

Since Gy 82 and Yy (direction cosines of rlz) are knowm, the coordinates

of point P2 are specified in terms of r,, only. On the other hand, the

12
coordinates of point P, satisfy the equation of the surface 22(2 = £,(x,7)).

Hence,

(z1 + erlz) - fz(;1 + ayTyss yl‘+ Bzrlz) . ﬁ3.23)

This noulinear equation can be numericallv solved for iy and rhe result

subgtituted into (3.22) to calculate x2"92 and z,.

Coordinate syséems at point PZ: Similar to the case of poiat Pl’ we

set up the coordinate systems (xé,yé,rlz),:(uz,vz,Nz) and (x§,y§,r23)-for
the incident ray, the surface 22, and the transmitted ray, respectively,
with commcn origin at P2 (Figure 6). Skipping the details, the resdlts are

given below:

'
- ~

| SO . o
3 B RS LR N o (3.26)
in which
. » Y: of,!
| . 2 2,172 ] 2
. 27 AT e TRy T My T
- : 2 YZ
I
16

ot v st st i e i 8 i




N, x r .
S S S Halk S i
2Tt T RTITUT [=(ryp + 2125 =+ (x1 * 2,357 3
2 % Tzl §
+ (xuf2y = ¥12f9,02] (3.25)

in which X199 Yyps and z), are given in (3.22) and

Ly = [lyyg + 258 )+ ‘xlz 212t

Also

- -~ -~

1 2
Uy vy XN AZL,[[xlz(l +Ey) (2

) + (z

d
le 2 )]x + [le(l + £ x)

. 2.1/2
= yf) T

’2 y

2 - )
+ £, (2, - 1y Zx)ly * Iy1pfay + Mooy * 12(5 + £5012) (3.26)
o S SRR | _ . ) 2 2 .,2 e
272" T2 T L [x15(z19 = y1ptpy) * E2x‘712 oz Ix + Iy (2 - xppin)
+ ¢ (xz + z2 )];- [z,,(y,,f ) + (x + y ]z} (3.27)
2y **12 T 212 121282y ¥ %12 fax 12 7 Y12 .
| - - z., = X, .6, =y, ,f
dos q; -y T, - 12 12 2x 1; 2y (3.28)
, ' 2 12
in a; * n(l - cos a )1/2 (3.29)
; = gin at ; + cos at % (3.30)
23 2 %2 2 Y2 .
X S t " t s -
Xy ® ¥, X Toq ® CO8 Q5 U,y = sin.az-Nz . (..31)

Notice that as in the case of point Pl’ all szine and cosine values for
aé and a, are po itive real. However, sin a;'can become equal or larger
than unity, in which case total reflection occurs and surface waves appear.

In the present work all such phses will be disé;rded.
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Coordinates ¢f the observation point P3. Ouce Tos and the coordinates .
=

of poipt Pz are known, the coordinates of P3, the point of imcerssecticn of the

;ay and observation surface 23(2 =25,z 4 constant), are easily obtainedf
Hyy = rpplagx + 837 + 7;2) = 1,1y,
X33 T 83Ty3 X3 T Xyt 04Ty,
Y23 % B3T3 73Tyt B3‘;23
"23 = Y3%3

zy =z, + Y%, (‘3.32)

but or the plane surface 23, L7 -z, + Y3Fy3 = zy which gives

' z z : _
r,, = =22 ) (3.33)

23 Y,

Since Gy By and Y, are known, substituting T)q from (3.33) into (3.32)

yields the values of Xq, Y3 and z3.

Curvature Matrix of the incident field at Pl. Since the source

produces a spherical field, its curvature matrix in any orthonormal

coordinate system at point Pl (here xi and yi) perpendicular to the ray

propagation direction r

op 18 siven a:.ﬁ3], (41,
. l";/ro‘1 0 . .
Q]. - , -~ -;—— u (3.34)
IO ]./r:01 01 '

-

~in which Ty 1s thq'ridiun of the spherical wavefront at point Pl, and U

denotes a unit matrix,

18
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Curvature macrrix of the surface L.. It can be easily shown that the

1
derivatives of vector ;01 E ;1 {starting atlthe origin Pg and ending at
a poinr such as Pl on Zl) with respect to two independeat parawmeters X,

and Y1 dn‘the surface L,, as given below,

?
1
»

3r. 3 3 3
£y x . ¥y - z,

-
T, = - X+ ———y+——zmwx+f z ,
Ix axl Bxl 3xy Bxl Ix
3T, 3 5 3
x v 3z, ~ -
- 1 1 ‘1 1 ,
tly »~ 3y 5y x + 37, y + 3 -y + flyz . (3.35)
1 1 i 1
Ay ey
with z, - fl(xl,,‘l) . flx - -3—;; ’ fly‘ = -5';; .
lie in the tangent plane to the surface at point Pl' It can also be
easily shown that the derivatives of the unit vector N, normsl to 31 at

Pl’ with ;especﬁ to x; and s also lie in the same tangent plane and are

given as

. N € f - f f

- - 1.1 . c o - 1 " Ixx 1y lyx &

le ax A ( flxxx flyxy) + L2 x1
1 1 ) A1

) 3N L £ f - f € .

SR S S - - I1x Ixv: “ly ley = p
1y "3y, " s ( tlxyz flny) + - O N, {3.36)

1 "1 : AI

; 8 g = Lo(s P
ia which nl is given in (3.12) ".MI f Al(z. '1:? fly’) .
The latter two vectors can be written ir terms of che previous two

vectors defined in (3.§S). such that

- . -

4
le _ t | ix
- in - . .
q F1x"1y e 1
“1y ly]
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o

The matrix § - is the curva
R L i1y
T and rly and can be shown ({
o - -
I, ¥ " Tz Fix
Q-»-’ - :‘ . 2}
rlxrly {"ly T1x iy
r
R T LN
-
8 |08 - h
in which
E, =1+ £, £ =f f
1 1x 1 1x 1y
.« = - fix £ = !
1 oY 1y

ture matrix of the surface in coordinates

31, [4]) to be

.-» T -+ L * - .2 -1
Iyl [fix " fix Tix T Try
- ¢ --> -’ . o -b‘
rlf LF1Y' Tix rly rly
£18 - & F) A
. (3.37)
8,8 - leI
: 2
G =1+
f
- —iZY
8 5,

Thelcurvaturc'na:rix of the surface tl at point Pl' defined in the

coordinate system (ul.vl). is obtained from the one given in (3.37) ae

follows:
Q‘ “ -

ux’vl‘

in which matrix A, is given as:

I

-1
(Al)'1 Q, . A (3.38)
?1:’1y
- - - "
Y Fix * V1
. o P L) N .
Y Iy " M1
20

i andi
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Curvature sarrix of the trarsmitted field at P,. Wow with the ipcident

L

ray curvature matrix and the surface curvsture matrix known, we proceed to

find the transmitted ray curvature matrix Q;. It 13 obtained from tha
following equation [4]

' T
06y Total o v (adyTolst 1 . t_ 1
k\GI) Qlel ko(el) Qlel + th , hl k cos @y kQ cos a; . (3.39)
z, : . oy A :
Here Q *, Qi and Q' are Jdefired in (u,,v.) (x1 yi) and (x% yt) coordinate
M A 1l 1’71 171 171
aystens, reséectiveiy. ei and e;_are matrices which relate the incident

and transmitted ray coordinates to the coordinates of the surface 21 and

for these coordinatc systems, 2s defined in Figs. 5 and 6, they are given

as:
w N N ~ r h
. r"i T %+ 9| |eos e} ¢

¢

o] -
o S S O |
£ SR CU AT B L
R . 1T t 1
xl * x ° v1 cos al 0

o) = . . (3.40)
At - ‘: - 1
U179 ) v 1 R

!oticc that due to cho'éurticulat chotce of coofdinatc ny-écnc the transpose,
ST. and the Luvcrac; 6.1. of these matrices are easily found. Then from |
G.39) |
€ . ti-l, -1411 v -1 1. 51, e -1 '
Q1 - (Gl) [n qulel + (cos a; = o " cos °1) qQ )(el) . (3.41)
Ajnid 1* should be noted that this Q§ is‘vulid in'(;i,;i.;lz)vcoordintte

system,
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Divergesce factor im the dielectric. At this point we can find DFlZ’

, the divergence fnctorlfor the ray pencil in going from point Pl to peint

P,, as given in (3.4) and repeated here for convenience (sce also, (3.8)):

1/2

. . -1/2 -
PP, = +qy75) (1 +Q,r,,)

in which 9 and q, are the principal curvatures (inverse of the radii of
curvature) for the ray pencil in rhe dielectric (Region II) and are found

ffon the following equation

) U1 92
t t . .t
Q" - trace (Q;)q + det (Q;) =0 , Q; =
' 921 922
or
2 ' ’ ' .
qQ - (qll + qzz)qv* (qlquz - quqZJ,) =0 (3.42)
“ays 9y = 3ilay, +ay) +layy + a7 = &C )11’2
1* 92728 T %22 11 " %22 11922 T 2921

l

‘Curvature matrix of the ray pencil 1nci4¢nt'upon 22 at point P2

The curvature latrix of thc ray pencil, in going £ton point P1 to Pz

Ain the diclcccric. chanse: accorﬂing to the ollowing equaticn (see [3]),

t ‘-'1 v

ot = t@d e ut .

However, this matrix is valid in & coordinmat systen parallel to gxl.yl)
with origin at point Pz. It is transformed into the following mstrix in

the (x;,y;) coordinate system (belonging to the incident ray at point ?z)

.,22.




- In which

‘B, =
1" %

Curvature matrix of the surface Zz, curvature matrix of the ray p2ncil

' Q§ B (3.44)

e
SR £
e ot )
v, Y,

transmitted intc Region III at poi

nt P2, and divergence factor rfor the ray

field in going Irom point P, to P,

. Foll&uing the steps similar to those

for point P,, and skipping the det

helow.
L, L G, - £,F, £,E, - e,F,
L . -'ZE £.G F , £ F
Tax’T2y 43 [£262 < 8F, 8B, = £,F,
{n which
' 2 2
By =¥ gy +£5
E,=1+€ P, =f ¢ G, =1+ £2
2 2x . T2 = Ity 2 £ay
-f. P ~f
o~ — £y = = 8- X,
2 2 By
r T
2 -1:.52 |
QA - - (Az) Q" - Az (3 . ‘6).
UV, rz‘JtZ’
in which
23

ails, wve arrive at the formulas given




‘! P ' _— . .
- AN AR g e bt et Snda e S cunir e < b ] AR o P
. i . . . e ¢ " . .
- ! K . ! . . . I . , \

ES ~ - . ~
Tzx " ™2 Tox " V2
i ,
> . - 4 - o
Ty * %2 Ty * V2]
and finally
t ty=1, 4.1 R t 1, B t,-1
Q. = (8,;) “[06.Q 8, + (cos a, - n cas a)Q.” . J(,) (3.47
2f., - 2 2°2|n; W 2 2 2 2
t’t - . . i°1 u,,V
xz:Yz xzs-Yz 2°°2
where
s cos a, 0 . cos a, 0
62 = » 62 - P (30473) .
. ‘10 i 0 1
Divergence factor DF23 for the field in going from P2 to P3 is then given

by (3.7b) and repeated here for convenirnce as (see also, (3.8))

1/ -1/2

Gt 14 =1/2 o
DF23,- L+ q,%,4) « (1L + q2r33)

in which 9 and q, are solutions to the équation given in. (3.42) with

‘qll.’ q12’ qzl
transaittced ray:

and 45 being members of the curvature matrix of the '

. . .
Q - .
z;t “t : '
272 (1 922
C. Final Solution
We now summarize the final results obtained sc far. The point

_ source at Po (Pigure 4) radiatas a lph§t1c11 wvave described by

24




e

~jk.r

(4]
> e o N
E (t’e:‘b) = (1'/;‘0) (P(e’¢)9 + Q(6,¢)¢),

_J ko ‘j
( i ) [(P cosdcoss = @ sin¢)x + (P sin¢cost + Q cosé)y - P sin“z]
(3.48a)
it . Yo; x gt (3.48b)

vhere (r,8,4) are spherical coordinates Qith origin at Po. The pattern
functions P(6,¢) and Q(8,4) in (4.28) are given. At point P, (Figure 5),

we decompose the field into two components in the directions of (xi,yi), i.e.,

' e me ek ee g . . . 1
1% R Gt e S St Wt | H o i o
El E (r;.0,,6,) 1 Expxg + Epypyy - o= Yoy, * B (3.49)

where (xi,y{) ar2 defined in (3.14) and (3.17). At the observation poiut

'P3, we express the field as follous

t o (Bt.ot L BEOECE - t |
£ (Eg x)+ Eey)ys Eg Yor,, * E; . (3.50)

where (x;,y;) are defined in (3.25) and (3.31). The two components

of §3 ir (3.50) are found from the matrix equﬁcion

2t PRt aelaten] ftat]
3752 3k (ar, #r, 0| L2 2 L. 152270 (B 1
. - (nrlz)(nrz3)e 0 12723 .8 Cmnti tt ~y g
E;’?'z: n : (y 1‘) :lcz(yz-yl) Ey vyl
(3.51a)
or more compactly,
-jﬁ (ar,, + r,.)_ - ‘
B,-ome 0 12 PRg | | (3.51b)
25
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In (3.515, n is.the refraction index of the dielesctric, ko is the
free-gspace wave mumber aid ti, ci, tg, tg are the normal and parallel
transmission ccefficients at point Pl‘ahd Pz, regpectively, as givén
in (3.2) and (3.6). The two divergence factors are given in (3.4) and

(3.7b). Their calculations comstitute the major effort of the present

solution.
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IV. FAR FIELD

For the radome problem under consideration (Figure 4), we are
generally iiterested in the transmitted field in the far zone (outside

the radome), namely,
ijor X R : '
@ - %;,—;;; [62%(s,0) + ¢ Q"(8,)] , £+ . (4.1)
' y
" where (r,8,¢) are the sp@erical coordinateg with origin at P0 (Figure 4).
From the analysis in Section 3, we have found the field at an observation

. poiat P3 over a surface 23. Now, let us cpnsidei how to obtain the far

field Et from the field over 23. There are two ways for doing this.

A. Direct Ray Method.

Refet:ing to Figure 7, we choose the surfacé 23 to be a sphere
cen;e;ed at Po and with radius r, whers r + =, Then point 23 is already
in the far zome. The field at P3 is calculated from (3.51). Because:
of the facé that P3 i3 at an infinitely large distance from the soirce,

'

we can ugse some approximations for distance r23; As shown in Figure 7,

ray A is the actual ray (which follows the Snell's Law) going from

Po to P3,.whereas ray Af is simply & straight line connecting PO and

‘Pj. When Tay appeats.in the phase calculation of h‘field; we' use
Ta3 ~ t2.3 = Ty3 = Toar =T = Toqs . | (4.2a)

Whan T,y appears in the amplitude calculation of a field, we use
'r‘23-~'r ‘ ' (4.2b)

where r is the radius of sphere I, aud s infinitely large. For example,

we uge (4.2b) in (3.7%), anéd cbraim -

27
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Figure 7. Direct ray method to calculate field on P ‘which is
on an infinitely large sphere centered at Po.

'

Figure 8. Direct ray method fails;co calculuiz the far field

at P3.
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- 1, I II1,-1/2

DFyy " Tlay " 437 , T+ . (4.3)

This method for calculating the far fieid is the simplest. However, it

fails if tha observation point P3 is a caustic point of the transmitted

ray field. An example is shown in Figure 8. The incident field on the
radome is a set of parallel rays from a parabolic reflector. After going
through a dielectric slab fadome,-the transmitted rays are still parallel..
Hence, q{II x quI + 0, and DF23 in (4.3) becomes indeterminsta. The B
failure of the direct Fa& method does not occur often in practical
applications. When it does. we mey use the second method described nexg;
B. Fogtiet Transform Method
Instead of going to the far field directly, we first calculate “7 |
the field ﬁ; over a planar surface 23 just outside the radome'by the - 1
- ray method (Fig. 9). It may be shown that the far field ft in ké.l)
is related to the Fourier transform of Eg. Ih% exact relation is

stated belov.

" +jk.z.cosd :
0,0 =dze " 00 (e, cos ¢+ £ stn 9) (4.42)
A | C @
0 . .
+jk.z.cosd o o
Q%(a,0) = 18388 700 (£, cos ¢ - £ sin ¢) © (4.4b)
. x . .
0

where z, is the distance from Po'to pldane 23.j The two functions fx
and fy»afe Fourier transforms of the field,over 25, namely,

jk.(x sin o cos ¢ + y sin 9 sin ¢)
£.06,4) = I [ E_(x,y) e 0 dxdy

. oy s 7

4.5)
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Figure 9. Calculation of far field by Fourier transform of the

field over plane I
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'Figure 10. Dieléctric elab radome.
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where (Ex,Ey) are tangantial components of Eg g given in (3.50). The

z, cos g term in'(h.b)‘is the correction made for the,tranéfer of the
' field with respect to the origin at C to the field with respect to the
4origin'at P0 (Figure 9).
The integration in (4.3) 1s over the infiniteiy’large surfaca of 53.
It is obvious that in actual computation the integration atéa Last be

limiced to the region where the fields are most significant.. To appreciate

this better, we rewrite it as

) L ]
£ (u,v) = A(2) I [ E_(x',5") A2TE TV gre gy (4.6)
y x'y'; y
with
x' = x/Ao, y' = y/A0 , uU=sin 8 cos ¢, v = gin 8 sin ¢ . &.7

In effe;t, che function f*(u,;) is the plane-wave spectrum of the field
distributiﬁn Ex(x',y') onythe plané 23. This field distribution can be
considered to ge essentially ban&élimited, i.e., the énetgy is
concentrated in the visible»region of Ehé spectrgm. Therefore, fx has
significant values for |u| <1 and |v| < 1. v

Thé integration in (5.5) is,ﬁest computed' by the use of the Fast
Fourier Transform algorithm. JBut, for this; a uniform recrangular
samoling érid is ieqpifed.' So the first step.wuuldibe to find the fieid
~oﬁ che plane 83 at'a set of uniformly spaced points from the fields given
: at a éé: of r;nddnly spaced (in the géﬁeral caée) points waich are the
'resdlf of ;ay’gtécing through the radome (ficlds at points like ?3).
This requirés in:eipolatiod; We have developed a rather efficieut linear
interpolation algorithm in the generél two-digensional‘caee; The g:id
.constants (distance betwéen two cbusecutive points)'iﬁ the x and y
directions are detérminedlﬂy the Nyquist Sampl;ng.fh;orem; Thus,

£ R |

. R o
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A0
.q ’.—J-'---l-‘- &* 0
f%i 0 for |uf > "1 4x' =%e3 or ‘Ax - (4.8)
AV '
y. N S 1 S
£ %0 for jul > p 1 4y’ =Z=3 or 4y d-— : (4.9)

y
Therefore, the natural choics for the intregration pcin:s would be a squaré
uniform samp'liﬁg grid with grid conatant of the order of lo/2. However,
in practice, since the basm angle without radome is known aad is not
expected to change drastically in the presence of the radome, a ltetter
estimate of the upper limits of |u] = % and lv| = -}:cau be made. These will
be generally s'nallcr than unitv as given in (4.8) and {4.9), which will
allow for larger snplix;g intervals 4x and Ay,

A reasonable estimate of the grid size X, Y, iz the x- and y-dimensions
c;n be made on the basis of the signif{cance of fiel] values on plane 23

such that the field has apprecisble values for

-3 <K< . -z <y < Y 7 (4.10)

I
nive
)<

rajre

X aqd Y, together vith ax, 4y, specify the number of grid points in the

x and ¥y dircctio{u,

 which must be the same as the number of points in the u.ead v directions

in the traasform domsin. Since the grid extent {n the transform dosain

'U and V, are already specified, tt- sampling irterval in the tranaform doms

would be

U
N

du . "n'l » dv = ! S ' a ) ., (6'12)

vhich completes the picture,
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To summarize the main points of this sectiom, starzing from a

kAowledge of.:he field on a set of generﬁlly ranasm points on the 23
plane, an id:erpoiacion'schemeAis used to obcaiﬁ the field values on

M x N uniformly spaced points in the x and y directions (see (4.11})) .
bwith the 'grid size X x Y centered at tiue origin and sampling intervals
Ax, Ay in the x and y directions (see (4.8), (4.9)5, respectively. Once

this is accomplished, an FFT ulgorithﬁ is used to find the far field.
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V. SPFCIAL CASES

The solution ob:iained for the present radome problem is the m&st

general one. Let us now concentrate on a few special cases which bring

out interesting physical phenomena.

A, Nc radome.

In the absence of a radome (n = 1), the rays in Figure 4 becomes

straight lines going from Po to P3, and che rield at P3, according to

(3.51), becomes

“jka (T, +r,.)
E,eon e O1BE

Here the total divergenca factor is

T

| o1
J(DF,.) = -
1277723 r01 + rlz

DF = (DF
+ 1y,

"which accounts for the spherical spread of the incident field.

B. Dielsctric Slab Radome

(5.1)

(5.2)

When Zl,lnd 22 are parallel planar surfaces, the radome shell becomes

a dielectric slab (Figure 10). The field n£ §3 is given by (3.51) with

' '61'
DF'-t(r P Y A
W1 T m F12 7 F237% 01 T g 12 * T2’
_ where ' ' '
|con ‘i'z 24 )2 ., 2 ¢
8= = (gec °1)[1 - {;] sin °11
cos a; .

Details of the derivation of (5.3) are given in Appendix A.’ When

a: -0 (norpnl {ncidence), ($¢3),b¢£o-od s

3

(5.3)

(5.4)




To1

DF =

; . (5.5)
rgp ¥ (U/rirg, 41y,

It is well-known that an interpretation of DF is the expansion ratio

defined by

Area at P3 1/2 '
DF = Area at Pl (5.6)

where "Area" is that of a small ray tube centered iround the ray shown in
Figure 10. As a numerical exanplé, let the ;hick#ess of the slab be
1 meter and both Po and P3 be 1 meter away from the slab (Figure 10).

In the absence of the radome (n = 1), DF in (5.2) has the numerical

value

-1 L
(Dl”)nl_1 3 for all ay - (5.7

When the slab radome is present, we plot DF in (5.3) as a function of
n for the two valﬁes of ui = 0° and 45° (Figure 11).' We note that fov
n > ;, DF is 11vny:lhigh¢r than the free~space value; In the limit
n + =, DF approaches the asymptozic value of O,S for a;l incident-
'angles,.ai. - | '
C. Spherical Shell Radome i

Let the two surfaces :1 ‘“4,22 be spheres of radii R1 and R,,
respectively (Figu;c 12).. “he éhickncco-of :ﬁo vadomse along ihc z-axis

is d. We concentrate on the far field nloﬁg the z-axis, {.e.,

Com =™ a

23 '1 - 0 ' . ' ‘. ' (508)

The field at P3 is given by (3.51b) wvhere the divergerice tactor is

reduced to .
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Figure 12.
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-1

DF = {r 62 1+ (a- l)RlR [%2 ! -1+ 1 - -—-]} .

(5.9

We note that the first factor in (5.9) 1is identical to the DF in (5.5)
for a dielectric slab radome. Thus, the ratio of the electric field at

P

3 for the spnerical sheil and that for a dielectric slab is

|£.]" for shell afx, | &)1
n = —— {14 -1 2 —-2-5—31-1'4»11-51-— .(5.10)

|Z,] for slab’ R1R Ty

‘As a numerical example, consider the case in which tl and 22 are concentric

(Rz ~R = d), and (Rlld) = 2, We plot nas a funcc;on ot (rOI/d) for
p=0.5and n= 3 (Figure 13). Not-: that n = 1 vhen Tor " Rl' (Al1
three points A 2, PO in Figure 10 become one poinc ) Then the
:;ansnitted field through a concentr;c spherical shell and that through
a slab vecome the same.

A most interasting phenoitgon oc;urs when four parameters

(n, Rl,xz,ro.) satisfy the following rglition

(@ - 1)ryR) (o 1}4 |

TR @ = Drg; U=

(5.11)

Thea DF in (5.9) becomes infinite! It means that the rays in the pencil |
pear the axis emsrged from the radome are parallel so thnt'thcy £;cus ac
the far fiold point. vAccordina to the present geoicérical optics theory,
under the condition in (5.11), the far field om cha z-axis 13 infinicely
large (a cnustic potnt of the geq-cttical optic- field). Thc actual field
i3 large but finite, and its vaiuo can be predicted only by using a more
ro!ingd theory than tpn present geometrical optics (such ae the Fourier
transform mathod in Section 4.B). This shﬁjact‘will be 1n§esti$;écd

in Part 1I cf this report.




Figure 13. Transmitted field E_ transmitted through a sphericai' shell
norsalized by Eb which is that through a dielectric slab.
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NUMERICAL RESULTS OF RADOME

VI.

For a finiﬁe-sized antenna inside a radome, ovr approach is to
represent the antenmna by an array of poiant sources. ‘In the presént part
(Part I), we c&nsider only a single point source, while the array will be
studied in Part ;I. As explained in (3.48), the incident field §1 from
the point source is characterized by two pattera functions P and Q. For

the present computations, we assume that the point source is y-polarized.

Thena it foliows that
{6.1a)

P(0,4) = Vg(€) sin ¢
. (6.1b)

Q(e,4) = VB(G) cos ¢

where V_ and vn(e) are, respectively, the E and H plane patterns, and they

assume the form

V,(8) = (cos )" , 'vﬂce) = (cos 8)% . 6.2)

In particular for m = ] and n = O, the incident field is ideatical to

the far field of a y-directed electric dipole. In the B—ﬁlane (¢ = 90°),

the incident field in (3.48) becomes

. -jk.r
(r,6,0 = 0% -1—3- (0 cos 6] (6.3)
Yy \‘4 (r/ko) 8' . . .
The total transmitted field thrnugh the radome in the E-plane is
given by f ' :
-jkor . . : o
' (6.4)

- E(r,0,9 = 907 o™ (RO , rse .

In the following, we pregsent resuits of P(8) for various radomes.
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We héve étudied a total of 8 radomes. Tﬁey differ in the .oliowing
parameters, ésllis:eld in Table I.
:(1)‘ Radome shaﬁe (sphere dr.paraboloid)
(11) Relative dielectric constant €. (from 2.5 to 5)
{111) 'Rﬁdome thickness
li(iv)i.Soutce positions
‘We discuss our numerical results below.
. All the spherical radomes (A to D) havé a radius of 20 XO’(Figure 14).
We ﬁlot the magnitude of pattern function Pte) defiﬂed in (€.4) as a functiun
of 8 in F{gures 15 to 22. Generally, the effect of the radome is p;edicable,
naﬁely, (1) |p(e)] decreases for taicker 1aye£s or/and higher ¢ ; (i1) (o)
decreases as the source moves laterally away from the z axis. The effect of
the.radome cﬁrvature can be seen from Figure 15. When tae source is located
at position‘3 (center of the spherical shell), the field on the z-axis is
identical to that of a dielectric slab radome, as can bebpredicted from (5.10).
Thiq‘field becomes stronger than its countarpart through a slab for the source
posi;ibn 4,:and beconeS weaker for the source positiom Z.
Two types of paraboloidal radomes are considered. In both types, the

inner surface 1§'described'by

(‘:—}'50--17&24-;'2) | ) S (6.5)
o T &l S -

. The outer surface for the first type 1is

(—;—-]- 50.5- == 2+ 5D, | - (6.6)
o) - L% : | | .

so that the thickness of the radore increases toward its base (Figure 23).

The outer surface for the second type is
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TABLE I

RADOME PARAMETERS

) o Thickness Fatterns in
Radome Shape € along z-axis Figures
A W 15, 16
2.5
B 10/4' 17, 18

e’ e sphere
C X6/2 19, 20
5.0
D Aol 21, 22
E Paraboloid I 10/2 25, 26
. (Fizure 23)
' 2.5
F Paraboloid II ' LS 27, 28
G ' {Figure 24) 10/4 31, 32 .
H - Paraboloid I 5.0 ’\0_/2 33, 34
(Figure 23)

*
).-0 i3 free-space wavelength
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Spherical shell radome.
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Figure 15. E-plane radiation pattern through radome A (¢ r " 2.5, d = J\O/Z)'
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Figure 16. Gz-plane radiation pattern’thréugh ra@onc A (et = 2.5, 4= XO/Z).
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Figure 17. E-plane radiation pattern through radome B (tr =25 d-= xolfo)..
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Pigure 18. E-plane radiation pattern through radome B (ct =25, 4= Xolﬁ). »
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Figure 20. E-plane radiation pattern thiough radume C (:r = 50,d= AOIZ).
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Figure 21. :E-plane radiation pattern tlitmxgh radome D (er *5.0,d-= xollo). ‘

100
0.95
0.90

| 0.85
0.80

0.75 |

J_ .

0.70

-zo‘

| I
-10 -0 .

POLAR ANGLE, 8 (DEG)

0




1.0C T /r

NO RADOME

0.95

0.90

@
x ossk
7
A
otk ;7
] 7

ok’ 7

‘ !
0.7 ——6

POLAR ANGLE,§ (0EG)
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{;— =505 - —Lt— t+yh (6.7
Lo 8.321) : :

0
so that the radome thickness is nearly uniform (Figure 24). Por the

incident field in (6.3), the E-plane patter [P(8)] has been calculated
for five source locations inaide radowes E to H.

It is particularly interesting to note that, for the field on the
z-axis, there is a striking difference between' radome E and radome F,
namely, there is a dip in Figures 25 and 26 for tgdone E, whereas there
is a peak in Fiéure 27 aﬁd 28 for radoﬁe F. This is so despite the fact
that, near the tip, radomes E and F are quite .sinilat &8 may be seen from
the expanded graph in Figure 29.' The reason for such an snamslous behavior
{38 explained below. Oun the z-axis, the geometrical parameters of radomes
E and F are listed in Table 1I. Rl and Rz are the radii of curvature of

the inner and outer radome curfaces,

TABLE II

FIELD ON z-AXIS

i
Radome | R /Mg | Ry/Aq | Eqy/A [p(e)}

E 4.500 | 0.547
4 . 50
p'. ‘.161 ' } . ,1003‘6

rupec’tively. Note that, while Rl is the same for both radomes, Rz does

vary slightly (abéut 8%). According to (5._1.1), the c,t:l.tical value of Rz

for source position 1 (r., = 50 Ay 1s

or

Critical Ry = 3.7 Ay o 1(6.8).

At this critical R,, the div'crgcnco‘factor DF and, ‘:hcrefoto‘, field E3
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Figure 29, Expandeﬁ views of the parnboloi&s of Figures 23 and 24 around.
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. to,the case discussed in Table II. For both radomes E and F, their values

in (5.1) as predicated by the present geometrical optics theory bécomes

infinite. 1In Figure 30, we plot the ratio of the field with or without

the radome for three values of o1 The so0lid curve in Figure 30 corr.spoands

of R2 are close to the critical value R2 = 3.7 A and consequently, the
fields on the z~axis are quite sensitive to 32. For radome E, the patterh
function |P| has the value 0.647 (dip), whereas that of :adoné F has the
value 1.035 (peak). It ghould be pointed cut that the value 1.036 for radome
F is not a very large number. We do not have a caustic in the far field.
Hence, our calculations near the peaks.in Figures 27 snd 23 based on the
geometrical optics should be reasonably accurate.

Patterns for fadomes G and H presented in Figurés 31 to 34 exhibit

the similar peak and dip phenomenon.
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APPENDIX A

DIVERGENCE FACTOR FOR A DIELECTRIC SLAR RADCHME

Figure 10 shows the slab radome in Cartesian coordinates. Since the

curvature of the radome is zero everywhere, the curvature matrix of the radome

is zerc. Considering the transmission at Pl; if Qi is the curvature matrix of
the incident wavefront, the curvature matrix Q; of the transuitted wavefront

at P, 1is (3.41)

1

t o (aby=l ol o1 o1 at.-1
Ql (01) [51 Ql Ql/n] (01)- B (A.1)
i t .
where 61 and 91 are given by (3.40).

The factor [e; Qi ai/n] ﬁly be evaluated usins (3.41) end (3.34) to yield

-~ -
Fos%ci
nr 0
i .1 .1 01
% 8 |
n
X
Q
L nrOI
‘ 1/cosa§ 0
t.-1 ’
(01) _ .
Lo 1]

Hence, (A.l) simplifies to

67.




-y )
0

gary, |
. t . , :
Ql | | :A.2)

0 i |

i o1

1,2

where 8 » [cos a;/cos a Now, (ql, qz) the principal curvatures of the

1
are.(fton 3.42)

transaitted wavefront at Pl
q, » 1/(gar,,)
q, = 1/(nr01) .
The di&ergence factor from P1 to Pz i,a.,-DFlz is, therefore, gi§en by
Blary;)? 1 12
_DF., = . - (A.4)

12 |
| [(Bnrgy + 1y gy + 7))

Now let us consider the transmission at Pz.' The curvacture matrix Q; of
thelincideu: wavefront at Pz is given by (3.44) where ﬁ is the céordinate
transformaticn matrix from (x;, yi) to (xi, yé), . However, in the present

case B turns out to be a unit matrix and hence

L1ay = 1., | |
1 : 1 - : - -
Q2|x2‘9 yZ 'Qzlxl > Y§ . - (A.5)
Therefore, Q;I;; , ;1 - [(Q;)-l +‘r12v]-1 v
2 .
(Q;).1 can be obtained from (A.Z) as
- Bury, O | |
Q) ™= . (A.6)
0 BRIy '
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Hence,

Qlat i= . (A.7)
2 72 .
0 mr———————

o1 ¥ T12

Again, since the curvature matrix of 22 is zero, the curvature matrix of

the transmitted wavefront at P2 is given by (3.47)

Biay  apon ocafy=l ool oLiay  ay alyeafy-l :
Qzlx; . y; (8,7 [ne), Q, x; , Y§ 8,1(8,) (A.8)

wvhere 9; and Sg are giveﬁ by (3.47a). Egquation (A.8) leads to the following

t). .~ .
expression for Qz xt , yt :
2 2
gn 0
(Bnr., + r.,.) '
Gl x= 0r - 12 . . (A.9)
L4 2 > yz ‘ L
0 n
argr + 12

Now, as befcre, we calculate the priccipal curvatures of the fransnictéd

wavefront at Pz. Thus,

n

q, ==
1 Barg, + 1y,

(A.10)
q, = S, T,
2 (nr01 + rlz)

And, the divergence factor DF23 in passing from PZ to ?3 is given by
: 1/2
o r (gary; + r,,)(nry, + 1p,) ] .

- 1 12 -
23 |(Burg) +x), + Baryg)(arg) +7p, +omryg))

PO (A.11)

RN T T
L




H

'n-.e'overall divergence factor DF is

DF = DF].Z x DFZB

T T 173
[Cox + 3 T12 + 1) ey + L5 7y, + 1))
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